
AD—AOSO 576 NARYLAIC UN IV BALTIMORE COUNTY BALTIMORE DEPT oc MAT—ETC P/S ins 
N

DETECTION’ ESTIMATION *110 CONTKO~ ON MOLt MANIFOLDS. (Li)
59Th J T LO APOSR—7*—flhi

ISCLASSIFIEO AFOSR—TR 76—0i55 tl.

ENJO
TA TI

3 —78
DOT



.- .

~~~
— .. , .

~ ——-—- --- . ----
~~~~~~~

.

F ~~~~~~~~~~~~~~~ ~~~~_~~~~~~~~_ * ~~
-._~~~~ p ’ —~~~—~~~~~~~~~~~~ -~~~~~ .~~ - ..

94, SECURITY C S IF ICAT IO pi  OF THIS PAGE (Wh.,. !Ie~a nt.,rdJ
• 

~~~~~~~~ ~~~~ # 9 I & &  LI~~~A I~~ kI D A I  READ INST RU CT I O N S
rUI~ I UU~~ UM I~ I ~~ I lUll U ~~U BEFORE COMPLETING FORM

RT .e~~. V<ESSI0N NIB. 3. RE IPIENT’S CATALOG NUMOIR

78- H 15~ J ’r’ 
_ _ _ _ _ _ _ _ _ _TITLE (end Subtitle) 5 TYPP~J~~ R~~DnRT £ PF~~ I(S fl ~~~~~

~ ~~ETE CTION , ~STIMATION AND ç~ONTROL ON GROUP -‘~-- ‘Iflte rjm re .1~’~~
~AN I FOLDS• ~~~~~~~~~~~~~~~~~~~~~

7. AUT HOR(a) S. CONTRA CT OR GRANT NUu~~ER(.)

~~~~~~~ ~~~~~~~s T./L~J ~~~ ~~~ro’s i  ~~
~~~~~ 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL ENT . PROJ ECT . TASK

~~~~~~~~~~~~~ Maryland LL,~ .— ~~~~~~~~ 
AREA & 90 IT NUMUERS

Department of  Mathematics 61102 2304 Al
Baltimore , MD 21228’

_ _
1 ,

1$ . CO TROLLING OFFICE NAME AND ADDRESS . . u~~ E
~~~ Air

N
Force Office of Sc ien t i f i c  Resea rch/NM ~~~~

1’I978j
Boiling AFB , DC 20332 u. NUMB EROF .~~~ C~— 

~~~1

loc~~~~~~y4,j
14. MONITORING AGENCY NAME & AOORESS(If dlH.,en t from ControIlSn~ Otlic.) IS. SECURITY .

UNCLASSIFIED
ISa . DECLA SSIFICATION/OOWPIGRA DING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol ff i ta Report)

Approved for public release ; distribution unlimited .
1 • 1.—

17. DISTRIBUTION STATEMENT (of the .b.tract entered in Block 20, If different trotr Report)

IS SUPPLEMENTARY NOTES

—

19. KEY WORDS (Conti nu, on reverie aIde If n.c.aaar,’ end Identify by block number)

!O. A S STRACT (ContInue o.e r.v.r.. aId. Ii n.cee.ary end Identify by block number)

~The drive to develop the full strength of the exponential Fourier densities
(EFD ’s) was cont inued,’aiiring the time piFiod covered E1Th1s report.~ The EFD’ s
have been successfully app lied to the projective 2—space which is the state spac
of an process. The results were generalized to n—dimensional system . More
striking was the generalization to an arbitrary compact Lie group .

A great deal of time was spent to the estimation problem of continuous—time
rotational processes. No significant conclusions were reached and the effort D

DD 
~~~~~~~ 

1473 EDITION OF I NOV 65 IS OBS OLETE UNCLAS SIFIED ~~~ ~~~
_____________________________________________

L/. .~.o 53 ,,

~~~~ ,31\~~~~~SECU RITV CLASSI FICATION OF THIS PAGE (Wh.n Date Ent.t d)



I1CU~~I TY CLASSIFICATION OF THIS PA OE(~~~~, Dat. tnS., .d) - -

‘4

20. Abstract

... _— ~‘was given up at the end of the reporting period. In its place an investigation of
the lack of closure property of EFD ’s was started. The convolution of an
EFD(n) and an EFD(1) was tested for EFD(n)’s on the circle. It was confirmed
tha t for n 1  and 2, the convolution of an EFD(n) and an EFD(1) was uniform ly
very close to an EFD(n).

- . ., • •  
~~~‘ ‘ ~

‘

~ ~‘LS ~, :,.. .
~~~

-:

- . - . ‘ ~~
l. 

~~~~~~~

— .
~ -

UNCLASSIFIED
% FC~IRIVV Cl *s~t~IcATInw ~~~ 

v u.. ~~~~~~~~ r’ ... ~~~~

~~~~~~~~~~~ —-—rn —~~~~~ -~~~~~~~~~~~ 
-
~~~



‘~ ~‘ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFOSR-TR.7 8 - O  155

Interim Patent Report

and

Interim Scientific Report

on

Detection, Estimation, and Control

• on Group Manifolds

No. 3

TO: Air Force Office of Scientific Research

Air Force Systems Coimnand

USAF

FROM: James T. Lo

Department of Mathematics .

University of Maryland Baltimore County

Baltimore, Maryland 21228

SUBJECT: Grant No. AFOSR—74-267lB

Detection, Estimation, and Control

k on Group Manifolds

Second Interim Patent and Scientific Reports

covering the period:

June 1, 1916 — May 31, 1977 
- 

- 
-

‘I

—

d13tp1~~ tj  

- -~~ - - — - —~~ ~~~~~~~~-— --~~~~~- - ~~~~~—- - - -—~~~~—--



.

.

h iN FORCE OFFIC’E 07 SCIENTIFIC RESEARCH (APSC)
~‘ :TT C Z OF TR4”SMITTAI, TO DDC

— 

~~~ ~tca 1 r~~-~ ;. ~~~ bc~ x~ ~~~~~ :1 ~~
~~j --- -  I ; c1 r- .~~ 0 LAW AFR L(--- ’~2 ~/b).- 

~~~i is unlimited.
.
~. D. Bi~OSE
rechn ical  Information Officer

I
I 

-- - -~~~~~~~~~~~ - ~~
-—

~~I~i_ — - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— - -  - —~~—--~-~—--—~ - —



r~v ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _ _ _ _  ___

TABLE OF CO~~~~~S

- - Page

I. General 2

• II. Publications 2

I III . Patents 3

IV. Suimnary of Progress 3

(1) Exponential Fourier Densities on S2/±l and Optimal Estimation 4
for Axial Processes

(2) Estimation and Detection on Lie Groups 5

(3) Estimation Problems with Lie Group Structure 9

(4) Convolution of Exponential Fourier Densities and Filtering 10
on the Circle

I -

— 1 —

I

I



I. General

These interim reports cover work carried out by faculty and staff members

of the Department of Mathematics during the period 1 June 1975 through 31 May

1976 under Grant No. AFOSR—74—267lB.

Progress was mainly contained in the technical papers and reports listed

- 
in Section II. The first three items are attached herewith and the last one

will be forwarded as soon as completed. The progress will be summarized in

Section IV.

During the report period the following people contributed to the project:

Associate Professor James T. Lo, Research Assistant Professor Masahiro Nishihama,

and Miss Linda R. Eshleman.

II. Publications

(1) Exponential Fourier Densities on S
2
/±l and Optimal Estimation for Axial

Processes, UMBC Mathematirs Research Report No. 77—1, TJMBC, Balto., Md.,

January-~977; submitted for pubHcation in the 
-IEEE Trans.~ on Information

Theory.

(2) Estimation and Detection on Lie Groups, an invited survey paper to appear

in a forthcoming book, Nonlinear Filtering and Estimation Theory——a

Status Review, edited by E. B. Stear, Marcel Dekker; also UMBC Mathematics

Research Report No. 77—11, UMBC, Balto., Nd., October 1977.

(3) Estimation Problems with Lie Group Structure, an invited paper included

in the Proc. of the 1977 IEEE Conference on Decision and Control, New

Orleans, Louisiana, December 1977.

(4) Convolution of Exponential Fourier Densities and Filtering on the Circle,

to appear.
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III. Patents

No patents have been obtained and no applications for patents have been

filed as a result of the progress being reported on.

IV. Summary of Progress

The drive to develop the full strength of the exponential Fourier densities

(EFD ’s) was continued during the time period covered by this report. It resulted

in the four reports and publications listed in Section II. The EFD’s have been

successfully applied to the projective 2—space, usually denoted by S2/±l, which

is the .state - space of an axial process. The results on 50(3), S
2
1 and S

2/±l can

be easily carried over to S0(n), S~, S~/±l. Bowever, more striking is the

generalization to an arbitrary compact Lie - group reported in Publications No. 3

and No. 2.

The research efforts during the year was not all roses. A great deal of

time of both the postdoctoral research fellow, Dr. N. Nishihama, and the P.1.

was devoted to the estimation problem of continuous—time rotational processes.~ 
-

The problem turned --out to be extremely difficult.:- While many cruci-al issues were-

placed in perspective, we were not able to reach - any significant conclusion. The

effort was finally given up in April, 1977.

The failure on continuous—time systems directed more man power into the

research on EFD ’s. It is known that in spite of all the niceties of the EFD ’s,

they are handicapped by the lack -of the closure property under convolution. As

a consequence, the signal processes in all the previous results on EFD ’s do not

contain random driving terms. Naturally, how to circumvent this difficiency

became the focal point of our effort.

It was suspected by the P.1. as early as 197.5 that the convolution of an

EPD(n) and an EFD(].) was not too far away from an EFD(n). Long series of Fortran

— 3 —
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codes were created to test this conjecture for EFD(n)’s on the circle. It has

been confirmed that for n 1 and 2 , the convolution of an EFD(n) and an

EFD(l) was uniformly very close to an EFD(n). These numerical results and

their application to filtering will be documented in Publication 4. The

endeavor has involved tremendous amount of program debugging and computation——

more than 2,000 minutes of CPU time on the UNIVAC 1108 of the University of

Maryland. This explains In part why the progress on our project has been so

sluggish since April 1977.

Before we summarize the reults of each of the four papers listed in

Section II, it Is appropriate to note here that the graduate research assistant,

Linda R. Eshleman, supported by the Grant graduated and was granted a Ph.D.

degree in Applied Mathematics during the report period .

(1) Exponential Fourier Densities on S2/±l and Optimal Estimation for Axial

Processes ——
In this paper we consider the problem of estimating axes in three—dimensional

space. An axis or axial vector is distinguished from a polar vector in that

the former is invariant under inversion. Such axes occur in many diverse areas

including the following: geophysical fluid dynamics to estimate the vorticity

of a flow, paleomagnetism to estimate a magnetic field, crystallography to

estimate the optic axis of a crystal, geology to estimate the direction of a

normal to the axis of a fold in a layer of rock, and quantum mechanics to

estimate the axis of rotation of a rigid body rotation .

Using densities of the form exp f where f is a linear combination of

axially symmetric spherical harmonics , estimation problems which arise by

examining various possible ways of obtaining a displacement of an axis will be

solved in this paper . Although the state space under consideration is home—

omorphic to a hemisphere of S
2
, the results for estimation on S

2 cannot be applied

— 4 —
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for several important reasons: the displacements defined in that paper may

result in a given point being displaced to a non—antipodal point in the opposite

hemisphere , the densities on S2 were not , in general , axially symmetric , and

the error criterion used for S2 is undesirable since it would result in a

rejection of the antipode of the optimal estimate.

Using the various displacements and conditional densities obtained in

this paper , detection for axial processes would be described by procedures

similar to those used for S2 and 50(3).

(2) Estimation and Detection on Lie Groups ——
There are five main sections in this survey chapter to be included in the

forthcoming book, Nonlinear Filtering and Estimation Theory—a Status Review,

edited by E. B. Stear. They are summarized as follows:

(2a). PROBABILITY ON THE CIRCLE. 
-

There are niany fundamental differences between the estimation and detection

problems on the Euclidean spaces and those on the Lie groups. In order for some .

readers to appreciate. them, this section-will be addressed to some probabilistic -

elements on the circle. The probability distribution function and the -

characteristic function on the circle will first be briefly introduced.

One of the main concerns in this chapter is to study how one uses the

knowledge of the probability distribution of a random variable taking values

on a Lie group to determine an estimate of the random variable that minimizes

a certain error criterion. The conventional least squares technique cannot be

used here. Let us take the circle as an example. The square error of the angles

00 and 3590 is (3592)0  whereas by geometrical intuition they are only 1° apart .

In the sequel we will look into this issue on the circle in detail.

— 5 —
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The importance of the normal probability densities cannot be over-

emphasized for estimation and detection on Euclidian spaces. Unfortunately,

there does not exist an analogous density on the circle that possesses all

the nice properties of the normal density. In fact, the nice properties of

the normal density are almost equally divided between two contenders for

normalcy, the folded normal density and the circular normal density. It turns

out that while the folded normal density is natural to use for continuous—time

estimation, the circular normal density is more suitable for discrete—time

estimation. They will both be discussed and compared in this section.

(2b). DISCRETE—TIME ESTIMATION ON THE CIRCLE. 
- 

-

Estimation for discrete—time systems on the circle was studied before, —

using both folded normal densities and Fourier series representations of

probability densities. The optimal estimation equations obtained therein are

infinite—dimensional and cumbersome. Although some numerical simulation has

been done on tlie iuboptimal equations obtained from truncating the higher

order terms, it is not clear whether these equations have satisfactory performance

in general.

As a matter of fact, the “dimension” of the optimal estimation equations

derived from using the folded normal. densities increases very rapidly in time.

When the Fourier series are used to represent probability densities, the

application of Bayes’ rule, which involves the multiplication of two a

priori densities, has the effect of spreading the dominant Fourier coefficients

into the higher order terms . Obviously, this dilemma becomes compounded in

multistage estimation problem when a sequence of multiplications of Fourier

series takes place.

— 6 —
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In this section, we will present an alternative approach. The approach

is based on a new class of probability density functions which have the form

n
exp 

~ 
(a
k cos k x t bk ~1~1 k,).

k=O

Such a density will be called an exponential density of order n, to be denoted

by EFD(n).

(2c). CONTINUOUS—TIME ESTIMATION ON THE CIRCLE.

A signal process and an observation process, taking values on S1, will be

formulated in terms of bilinear Ito matrix differential equations. The condi-

tional probability distribution of the signal, given observations over a certain

period of time, will be evaluated. Recursive computational schemes for optimal

estimation (filtering, smoothing, and prediction), with respect to the error

criteria defined in Subsection 11.2, will be derived. In fact it will be shown

that optimal estimates on S1 can be obtained recursively .by- the use of an

ordinary vector space estimator together with a nonlinear preprocessor and a

nonlinear postprocessor. Multichannel estimation on abelian Lie groups will

be examined. Examples illustrating the optimal estimation procedure are given

at the end of this section.

(2d). DISCRETE—TIME ESTIMATION ON COMPACT LIE GROUPS.

The results of (2b) can be easily generalized to the problems on compact

Lie groups by introducing a similar exponential Fourier density (EFD) on the

group. This density is obtained by using a sequence of irreducible unitary

representations which form a complete orthogonal system on the compact group.

It can be shown that a continuous density function on the group can be

approximated by such an EFD as closely as we wish in the space of square

integrable functions.

— 7 —  
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As in the circle case, the class of ERD’s of a certain finite order on

the compact Lie group is closed under the operation of taking conditional

distributions as a consequence of the group structure of the group. It will

become clear in the sequel that it is exactly this closure property of the EFD’a

that yields simple estimation schemes which update the sequential conditional

densities by recursively revising a finite and fixed number of parameters.

In order to Illustrate how the conditional density can be used to

calculate the optimal estimate on -the group, a rigid body attitude estimation

problem is solved as an example. The error criterion, the optimal estimate,

and the estimation error with respect to the criterion will be derived for a

given probability distribution.

(2e). DETECTION FOR CONTINUOUS—TIME SYSTEMS ON LIE GROUPS.

The idea of “rolling without slipping” introudced in Section IV will now

be generalized and used to formulate an observation process on an arbitrary

matrix Lie group. Briefly speaking, we will inject the differentials of an

observation process described by a vector Ito differential equation into a

Lie group via the exponential map and then piece them together. The resulting

product integral describes our observation process on the Lie group, the

injected vector observation process being called its skew form.

The observation process thus constructed on a Lie group will be seen to

satisfy a bilinear matrix stochastic differential equation, when its skew

form is linear. The observational noise can be viewed as entering multiplica—

tively.

Given an arbitrary bilinear matrix observation process, we will show that

the corresponding skew observation process can be obtained by “reversing” the

above injecting procedure. Furthermore, these two procedures will be seen to

— 8 —
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induce two “almost sure” bijective mappings between a vector—valued and a matrix—

valued function spaces, one being the inverse of the other.

It is well known that the study of a Lie group may be greatly simplified

by considering the tangent space (the Lie algebra) of the Lie group at its

identity. In fact, the local study of a Lie group is entirely equivalent to

the study of the finite dimensional linear algebraic structures of the Lie

algebra. In this paper, the above bijective mappings facilitate similar

simplification. It enables us to evaluate the likelihood ratio in a finite

dimensional linear space——the Lie algebra! -

In view of the above construction, the null and the alternative hypotheses

that the signal is respectively absent and present in the observation on a

Lie group can be written as a pair of bilinear matrix stochastic differential

equations. Using the bijective mappings, we may transform these hypotheses on

a Lie group into those on the corresponding Lie algebra. There the likelihood

ratio can b~~expressed by the well—known Duncan’s formula. Thus the evaluation

of the likelihood ratio on a Lie group also hinges on the least—squares

estimation.

/ When the signal is a linear diffusion process, the idea of using the

bijective mappings to work in the Lie algebra also leads to a finite dimensional

filtering equation for evaluating the least—squares estimate. This equation

is Indeed an immediate extension of the Kalman—Bucy filter to the case with

observation on Lie groups.

(3) Estimation Problems with Lie Group Structure ——
The exponential Fourier densities were used to study estimation on the

unit circle, the unit sphere, the three—dimensional rotation group, and the

projective two—space in a sequence of recent papers. Many finite—dimensional

— 9 —
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optimal estimat ion schemes were obtained mainly due to the closure property of

the exponential Fourier densities of any given finite order under the operation

of taking conditional distributions. Another reason for using exponential

Fourier densities is that any continuous or bounded-variation probability density

on the aforementioned spaces can be very closely approximated by such a density.

It Is the purpose of this paper to generalize the previous results to an

arbitrary compact Lie group and thereby to illustrate that it is the structure

of a compact Lie group that accounts for the usefulness of the exponential

Fourier densities.

As it is expected that most readers of this paper will be engineers, some

definitions and preliminary results will be briefly summarized below to

facilitate our presentation in the sequel.

(4) Convolution of Exponential Fourier Densities and Filtering on the Circle ——
While the EFD(n)’s are closed under conditioning, they are not closed

under convolution. This deficiency has prevented us from including random

driving terms in the signal processes in our results using EFD(n)’s. In this

paper , we will present a striking property of the EFD(n)’s; namely, they are -

almost closed under convolution.

The maximum informational distance, in the sense of Kullback, between the

convolution of two EFD(l)’s and its best fit by an EFD(l) is numerically

calculated and is 0.00539412984011850. Such a small number indicates that the

• convolution of any two EFD(l)’s Is virtually an EFD(l). Hence it is not

surprising that replacing the convolution of two a priori EFD(l)’s with its

best fit EFD(l) yields a near optimal estimate, which is almost indistinguishable

from the optimal one. All these numerical results are reported in the paper.

The case of EFD(2)’s will also be thoroughly studied in the paper. More

details will be submitted to APOSR as soon as available.
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